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In this manuscript we review research on the feedback mechanisms between photovoltaic energy pro-
duction and the urban environment, with an emphasis on synthesizing what is known, while drawing
attention to limitations, and indeed errors in, the literature on this topic.
We include in our analysis studies on photovoltaic (PV) systems in urban settings – on buildings, as

shade structures, or as stand-alone arrays within an urban environment. We further limit the review
to studies that investigate how the urban setting affects the performance of PV systems or how PV sys-
tems affect their surrounding urban environment. Our review is based on a systematic search of the lit-
erature, which revealed 116 unique articles that addressed the underlying questions in a meaningful way.
While there are conflicting results reported across this body of literature, our review and synthesis reveal
two key findings: (1) PV can significantly warm the city during the day, provide some cooling at night,
and potentially increase energy use for air conditioning of buildings in some climates and building types;
and (2) placing PV in an urban setting can adversely affect PV efficiency, reducing overall power produc-
tion up to 20% in comparison to PV applications in rural settings. It is recommended that future develop-
ments of PV technologies focus both on increased efficiency and the need to increase reflection of
wavelengths of energy not converted to electricity by the PV cells. Furthermore, designs for urban PV sys-
tems should explicitly consider the effects of elevated urban temperatures, pollution, and shading on sys-
tem performance.
� 2021 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Background

Photovoltaic electricity generation has grown at an exponen-
tially increasing rate in recent years, rising from 12 terawatt-
hours (TWh) in 2008 to 554 TWh in 2018 [1], representing an aver-
age increase of 47% per year. Currently, over 3.0% (2019) of global
electricity demand is met with this distributed energy generation
source that produces no carbon dioxide emissions during its oper-
ation [2,3]. Because of its ability to convert the plentiful energy
resource of sunlight into electricity, without contributing to green-
house gas emissions, and to generate and deliver that energy
locally thereby enhancing energy security, the photovoltaics (PV)
industry is likely to continue to grow.

Given this growth, it is probable that the portion of global elec-
tricity supply provided by photovoltaics will increase by an order
of magnitude in the foreseeable future, with much of that growth
occurring within the physical boundaries of cities. At these levels,
the effects of PV deployment on urban environments, and the
inverse effects of densely populated areas on PV efficiency, become
increasingly urgent to understand and predict.

The photovoltaic effect was first reported by Becquerel in 1839
[4], and is closely related to the photoelectric effect described by
Hertz [5], Planck [6], and Einstein [7]. Silicon p-n junction solar
cells were first demonstrated in 1954 [8], and advanced versions
of silicon solar cells represent 95% of the power of PV modules pro-
duced globally in 2019 [9]. From approximately 2016 to 2019, PV
modules have been produced increasingly with single-crystal sili-
con wafers, as opposed to lower-cost multicrystalline Si. Advances
in cell efficiency and manufacturing technology have led to a dra-
matic PV electricity cost reduction from 2.1 to 0.28 $/W from 2009
to 2019 for PV modules, the basic laminated and weather-resistant
component that is assembled into a full PV system. Lower cost per
watt translates to a lower levelized cost of energy (LCOE) of the full
PV system, measured in $/kWh of solar electricity produced. LCOE
reached a global average value of 0.068 $/kWh in 2019 for utility-
scale PV [10], and continues to become even less expensive.
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Photovoltaic systems have many forms depending on the sys-
tem size, the environment in which the PV system is located, and
the people or organizations that the PV system is designed to serve.
Utility-scale PV is typically the largest type of PV system, with gen-
eration capacity ranging from roughly 100 kW to 2 GW. These are
typically ground-mounted systems, often in rows of fixed-tilt
arrays, but increasingly in one-axis tracking systems that follow
the sun from east to west, reducing cosine losses due to sun angle,
increasing the energy yield (kWh of electricity produced in one
year/kW rated capacity of system) and extending the power-
producing hours farther into the late afternoon hours of high elec-
tricity demand. There is increasing interest in integrating these
electricity-producing PV fields with the functionality of agriculture
for grazing or raising crops, in what are known as agrivoltaic sys-
tems. When utility-scale PV systems are located near urban cen-
ters, increased solar absorption of PV fields compared to
surrounding terrain can warm the ambient air, increasing ambient
temperatures in the nearby cities, and in peri-urban and suburban
areas [11].

In cities and surrounding inhabited areas, the interaction of PV
systems with people’s lives and experiences becomes an increas-
ingly important part of PV design and implementation. Building-
applied photovoltaics (BAPV), in which modules are affixed to roof-
tops or facades of existing buildings are an important and pre-
sently dominant form of PV systems for both commercially
owned and residential systems. This type of system has the advan-
tage of being able to be retrofitted onto present structures. How-
ever, since the PV system was not part of the initial design of the
building, structural, economic, and aesthetic compromises may
need to be made. As an example, Fig. 1 shows an aerial view of
the Arizona State University campus, a semi-urban setting with
BAPV systems on the roofs of multiple buildings, parking struc-
tures, and sports arenas.

In building-integrated photovoltaics (BIPV), the PV system is
typically folded into the initial building architectural and aesthetic
design (Figs. 2 and 3), and may perform multiple functions: in
addition to providing electricity, BIPV systems may comprise part
or all of roof or wall surfaces, protecting the inhabitants from the
Fig. 1. Photovoltaic systems applied to existing rooftops and parking structures on
the campus of Arizona State University, Tempe, Arizona, exemplifying building-
applied photovoltaic (BAPV) systems. PV systems are denoted with a green dot. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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elements and replacing conventional building-skin materials; they
may comprise windows, skylights, and semi-transparent facades;
or they may provide partial or total shade to inhabited spaces
below. Earlier studies suggest that many cities could potentially
supply their own electricity needs with PV integrated into urban
settings, if PV technologies demonstrated at the laboratory scale
can be manufactured cost-effectively [12]. However, both BAPV
and BIPV systems are highly absorptive of solar radiation and can
heat up to temperatures well above those of surrounding struc-
tures. The modules then become radiative heat sources for inhab-
itants and structures beneath them, and convective heat sources
which can significantly raise the temperature of the ambient air
in cities, contributing to the urban heat island effect [13,14].

The combined advantages of local solar electricity generation at
costs that are frequently lower than alternative forms of added
capacity, avoidance of climate-warming carbon emissions, energy
resilience enabled by a distributed generation network, and fuel-
free energy production without the sociopolitical ramifications of
securing international fossil fuel deposits or the refining and dis-
posal of nuclear materials, seem poised to create a rapid increase
in PV deployment to provide global electricity needs. In urban
spaces, an estimated influx of 2.5 billion people to cities by 2050
[15] will dramatically increase both the energy demands of cities
and the number of new urban structures for living, work, and
recreation into which PV can be functionally and aesthetically
integrated.

The recent and anticipated future growth of urban PV is exciting
from the perspective of the renewable energy generation, but also
introduces pressing questions. Photovoltaic panels both alter, and
are affected by their local environments, in terms of ambient tem-
perature, wavelength-dependent radiant flux, shading of panels by
nearby structures and shade provided by panels to inhabitants
beneath.

In the urban context we pose the two related research questions
that are at the foundation of this review.

1. When PV systems are implemented in urban areas, how do
aspects of the urban environment affect PV performance?

2. What are the impacts of PV (beneficial and adverse) on the
urban environment?

We address these questions through a systematic and critical
review of published research addressing the topic of urban PV.
2. Bibliographic search process methods

There are seven classes of PV-urban climate interactions that
we investigate in this review. These interactions fall into two broad
categories. The first category involves the impact of the urban envi-
ronment on performance and efficiency of PV systems. This
includes the role of each of the following: (a) urban air tempera-
ture; (b) urban air pollution; (c) partial shading of PV; and (d)
deposition of particulate matter and soiling in an urban setting.

The second category of studies focuses on the impact of urban
PV on the local environment. This takes on three elements of PV
impacts: (e) on urban air temperatures; (f) on building heating
and cooling loads; and (g) on provision of outdoor shade.

We developed suitably broad individual searches for each of
these seven topic areas. Each search used multiple variants for
key terms. For example, to identify manuscripts focused on photo-
voltaics, we included search synonyms such as ‘‘PV”, ‘‘solar power”,
and ‘‘solar panel”. Most of the search criteria were applied to article
titles, keywords, and abstracts. However, to limit the search results
to the most relevant articles, some of the search criteria focused



Fig. 2. A rooftop building-integrated photovoltaic (BIPV) system on the Aula Pierluigi Nervi, Vatican. Although the modules are on metal supports that are separate from the
building structure itself, the array of modules has been aesthetically integrated into the architectural form.

Fig. 3. Building-integrated PV providing solar electricity and shade for inhabited spaces at the Ludesch Community Center, Ludesch, Austria. Photo: Bruno Klomfar.
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only on article titles. A full summary of the search strings is shown
in Table S1.

The search criteria were implemented in two of the most-
widely used abstract and citation databases, Scopus and Web of
Science. Scopus, from Elsevier, has more than 69 million records
covering more than 34,000 peer-reviewed journals across the life
sciences, social sciences, health sciences, and physical sciences.
The Web of Science from Clarivate, first launched in 1997 and con-
tains more than 90 million records, indexing more than 21,000
journals, books, and conference proceedings. While these two cita-
tion databases have substantial overlap, each typically yields some
unique records for any given search. By combining searches in both
databases, we are able to ensure that this review covers the vast
majority of relevant published literature, with a few important
caveats. First, and foremost, this search is limited to English-
language articles. There are, no doubt, relevant contributions in
3

other languages. Additionally, this review ignores the soft litera-
ture (that which is not archived in citation databases). This
includes information presented in websites, some conference pro-
ceedings, and industry/government reports. However, given the
large number of manuscripts considered in this review, we are con-
fident that key topics, approaches, and findings are adequately
represented.

This review covers a broad topic, with many publications in
each of the subtopic areas. As summarized in Table 1, our initial
screening revealed a total of 256 unique articles, as of Aug. 30,
2020. We subjectively screened this list for relevance, removing
from consideration 140 articles that were peripheral to the core
concerns of each subtopic. This left a total of 116 articles for
review. In some cases, high-quality, but very focused review arti-
cles exist within the subtopics. In those cases, we focus our analy-
sis on summarizing key elements of those reviews, emphasizing



Table 1
Summary of search results across the seven subtopics.

Subtopic area Search Results Subtopic Review Articles

Scopus Web of Science Unique Articles Total Relevant Articles*

air T impact on PV 36 14 37 [11,06] 3
air pollution impact on PV 9 4 9 [05,06] 0
Partial shading impact on PV 69 3 69 [30, 00] 2
soiling impact on PV 56 28 63 [30,03] 2
PV impact on air T 14 7 14 [08,01] 0
PV impact on buildings 52 10 54 [11,11] 1
PV impact on shade 25 16 26 [04,01] 1
Total Unique Articles** 245 65 256 116 8

* [a, b] – Here, a is the number of relevant articles found using the subtopic search terms, and b is the number of relevant articles in this topic area resulting from search terms
in other subtopic searches.
** Total unique article after removing duplicates.
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the most impactful manuscripts within that subtopic, and supple-
menting that content with our own analysis of papers published
since the publication of the available review articles.
3. Synthesis results

3.1. How does the urban environment affect PV performance?

Electrical output from PV panels depends on solar irradiance
reaching the PV surface and PV cell temperatures. However, while
PV panels are rated under clear sky conditions and at standard test
conditions (STC) of 25 �C, urban areas are known for their elevated
air temperatures, air pollution, partial shading, and soiling. As
illustrated in Fig. 4, each of these factors significantly impact PV
efficiency and power output in urban settings [16,17,18,19]. The
following sections highlight these relationships and summarize
past studies that have sought to quantify the effects.
3.1.1. Air temperature
The temperature sensitivity of PV panels depends on the panel

design and materials. Open-circuit voltage (Voc) and fill factor (FF)
decrease with increasing temperature, while short-circuit current
density (Jsc) goes up, with open-circuit voltage generally having
the largest change, resulting in a net decrease in solar module effi-
ciency g as temperature increases. It can be shown that the open-
circuit voltage decreases by approximately 2 mV per �C indepen-
dent of the solar cell bandgap. So the relative change in Voc will
Fig. 4. Schematic representation of the aspects of the urban environment that influenc
particulates (soiling), partial shading from trees, buildings, and other urban structures,
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be smaller for PV materials with larger bandgap and larger Voc.
For the temperature excursions encountered in normal outdoor
operation, these main solar cell parameters of Voc, FF, Jsc, and effi-
ciency are generally assumed to vary linearly with ambient air
temperature. Equation (1) shows this relationship between the
working efficiency, g, and cell temperature, Tc [20]. The rated elec-
trical efficiency, gT ref , of the module is calibrated at a reference
temperature, Tref , and solar radiation of 1000 W/m2.

g ¼ gT ref 1� bref Tc � Tref

� �� � ð1Þ
The temperature coefficient of efficiency, bref , for silicon PV

modules is usually around 0.2–0.5 relative %/�C [21,22]. Here, rel-
ative % change indicates the change in the ratio ðg� gTref

Þ=gT ref .

As a result of this temperature sensitivity, the maximum power
output decreases and cost of energy production from PV increases
with operating cell temperatures [23]. Fig. 5 shows the qualitative
sensitivity of PV module maximum power output to cell tempera-
ture for different module technologies (Cadmium telluride (CdTe)
with b ¼ 0:32% =

�C [24], Copper indium gallium selenide (CIGS)
with b ¼ 0:33% =

�C [25], crystalline silicon – full cell (c-Si 1) with
b ¼ 0:39% =

�C [26], crystalline silicon – half cell (c-Si 2) with
b ¼ 0:35% =�C [27], and crystalline silicon – back contact (c-Si 3)
with b ¼ 0:29% =

�C [28], silicon heterojunction (SHJ) with
b ¼ 0:23% =

�C [29]).
With solar reflectance less than 10% and efficiencies less than

20% [30], most current PV panels absorb as much as 70% of the inci-
dent solar energy. In contrast to many of the surfaces that PV
e PV performance. These include attenuation effects of air pollution, deposition of
and the role of air temperature in reducing panel efficiencies.



Fig. 5. Photovoltaic module maximum power output ratio (working maximum power relative to maximum power under standard operating conditions) as a function of
temperature for several PV module technologies. The values are normalized to standard test conditions (STC) to show the temperature dependence of different PV
technologies more clearly.
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arrays shade, the PV panels themselves have very low thermal
mass. So, while a paved or dirt surface may absorb a similar frac-
tion of incident solar radiation, they are thermally massive surfaces
that will store some of the absorbed energy, radiating and convect-
ing it back into the urban environment over the diurnal cycle.
However, because PV panels have low thermal mass, they heat
up at a faster rate than other urban surfaces, radiating and convect-
ing much of the absorbed solar energy into the urban environment
with virtually no time delay. Convective heat exchange between
panels and the surrounding air is proportional to the temperature
difference between the panel surface and the air, and can thus
increase or decrease power output depending upon the local con-
vection coefficients and sign and magnitude of this temperature
difference [31–33]. An experimental study conducted in Thailand
found that monthly power output from PV peaks during the
months with an average ambient temperature lower than 35 �C
[34]. The pattern of improved performance during colder months
(winter), has been observed in other cities as well [35]. This effect
is particularly evident for regions near the equator where winter
months receive a significant amount of solar irradiance, but are
still characterized by cooler ambient conditions [21]. In hot loca-
tions such as Arizona in the summer, the cell temperature of PV
panels can be as high as 90 �C, resulting in reduced power genera-
tion by as much as 30% [36]. An experimental study from Libya
measured PV cell temperatures as high as 125 �C [37]. It should
be noted, however, that peak cell temperatures depend on multiple
environmental factors beyond air temperature (i.e., cloud cover,
soiling and air pollution). In Australia, elevated air temperature
has been identified as the most significant factor affecting PV per-
formance in urban settings [38].

As urban areas are often warmer than the unbuilt surround-
ings—a phenomenon referred to as the urban heat island (UHI)
effect [39–42] — it is to be expected that locating PV in urban envi-
ronments may have an additional detrimental effect on PV effi-
ciency and total power output. The magnitude of the UHI is
5

typically largest in the overnight hours, but can still be as large
as 4 �C or more during the day [43], contributing to elevated PV
panel surface temperatures. Due to lack of space in urban regions,
PV panels are usually installed on building roofs, walkways, or
parking lots. One drawback of this practice is that urban airsheds
are warmer than their rural surroundings, leading to poorer perfor-
mance for PV in built areas than those installed in nearby rural set-
tings [44]. Moreover, the hotter ambient air temperature can
further reduce the power generation by affecting electrical resis-
tance in cables and power management infrastructure.

Multiple approaches have been used to try to reduce PV cell
temperatures. One such approach is to circulate a coolant on the
underside surface of the PV panel to remove excess heat. Such
approaches can be designed to operate only when the net benefit
of increased PV power output more than offsets the energy cost
to operate the cooling system [45]. However, the cooling system
adds significant capital cost to the system, as well as increased
module construction costs, maintenance costs, and reliability con-
cerns. Another approach to cooling PV panels is through use of
phase change materials [46,47]. Phase change materials (PCM)
work by using excess thermal energy to melt an encapsulated
material, without increasing its temperature. This process can be
reversed in the cooler nighttime hours, so that the modulating
effects on surface temperature can be repeated day after day. A
recent study shows that the use of PCM can reduce the peak cell
operating temperature by nearly 7 �C [48]. However, the drawback
of this strategy is that PCMs are costly with the payback period for
this application of current technologies as high as 10–20 years
[49]. The coupling of rooftop PV systems with a vegetated green
roof is another strategy to improve performance by reducing oper-
ating temperatures. In integrated PV/green roof systems the vege-
tation reduces the surrounding air temperature and reduces the
thermal radiation radiated from the roof surface to the panels.
However, the potential savings from this strategy is estimated to
be relatively low [50]. The backside of PV panels can potentially
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be used as a heat source for low-temperature thermal processes,
such as heat pumps, desalination, or dehydration [51,52]. How-
ever, the value of using PV modules as a heat source must be bal-
anced against lower PV electrical output at the higher
temperatures used for process heat. Currently, methods to reduce
PV cell operating temperature are among the most promising
approaches for improving PV performance in urban applications
[53]. A recent study shows that use of module materials with
greater thermal conductivity (Tedlar/polyester/Tedlar) can reduce
daily average module operating temperature as much as 3 �C,
which results in a 1.5% relative efficiency increase [54]. Encourag-
ing developments using silicon heterojunction technology may
also enable PV cells to achieve efficiencies above 20%, while also
maintaining a relatively low-temperature coefficient (�0.2%/�C),
enabling them to perform better in high temperature environ-
ments, see Fig. 5, [55].

Even though most currently installed and available PV tech-
nologies have a rated electrical efficiency from 15% to 20%, the
working efficiency may be considerably lower than rated values,
particularly during summer in hot climate regions. Previous stud-
ies reported that these reductions in PV power output could be
as high as 30%. In addition to these losses, increase in air temper-
ature due to the UHI effect can potentially further reduce PV effi-
ciency. Additional studies are required to evaluate these impacts,
as the link between air and surface temperatures is complex, and
the UHI effect varies seasonally and diurnally. Nevertheless, PV
performance in urban settings is likely impacted by elevated tem-
peratures associated with the urban heat island effect, as well as
other urban factors as discussed below.

3.1.2. Air pollution
The presence of atmospheric pollutants in the urban airshed

contributes to a reduction in available solar energy at the urban
surface. Similar to the UHI effect, the urban pollution island—
higher air pollutant concentrations in the urban atmosphere than
in nearby surroundings—is also a major challenge to PV power gen-
eration in urban settings [56]. Urban metabolism and the thermo-
chemical perturbation that occurs when urban built features
replace natural features, results in a higher rate of air pollutant
generation, including fine and ultra-fine particles and gaseous
emissions from combustion processes, building construction pro-
cesses, and other urban activities. Some of these emissions act as
precursors in the formation of photochemical smog. These pro-
cesses affect PV performance through the deposition of pollutants
on PV surfaces and as a result of increased scattering of solar radi-
ation. Particle deposition on PV panels results in absorption and
backscattering of insolation, reducing the transmittance of the
panel surface. The process by which airborne particles deposit
and accumulate on PV panels is known as soft shading (more
details are provided in the soiling section) [57].

A five-year-long study (2014–2018) was conducted in several
Chinese cities to assess the impact of aerosol pollution on PV
power generation at the city level [58]. This study found that cities
with higher pollutant levels have an average annual PV power out-
put reduction by 0.15–0.31 kWh (m2�day)�1 relative to clean air
conditions—a roughly 4.8–9.0% reduction in PV power generation.
A similar study conducted in Shanghai, China, observed a power
generation reduction of up to 5.5% due to atmospheric pollutants
[59]. Similar, albeit lower power production penalties have been
observed in less polluted cities. For example, PV installed in dusty
urban areas of Athens, Greece were found to suffer a 0.4% reduction
in absolute efficiency associated with air pollution in summer
months [60]. Several studies have explored the roles of deposition
of different natural pollutants, such as red soil, limestone, and car-
bonaceous fly-ash particles, common near urban construction and
industrial sites [61–63]. The results from these studies show that
6

the greatest reduction in power output is caused by the deposition
of red soil particles, followed by limestone and then carbon-based
ash. A case study in Santiago de Chile found that the aggregate
effects of atmospheric pollutants reduced global horizontal irradi-
ance by 3.5%, and direct normal irradiance by 14.1%. The study also
found that a PV panel exposed to a hypothetical atmosphere free of
aerosols would have 8.7% higher annual output than under actual
polluted conditions [64]. The adverse effect of pollutants on PV
performance depends on particle size distribution (mean diameter
and standard deviation). Fine particles such as cement and carbon
particles have a greater effect in reducing PV performance than
coarser particles [65]. An indoor test study, based on artificial dust,
by [66] found that, for a constant dust deposition density of 10
gm�2, particle sizes of 0–38lm could reduce power output by
16%, while coarser particles (110–150lmÞ reduce power output
by only 5.4%. Another observational study conducted in Warsaw,
Poland found a 2.1% reduction in PV efficiency due to deposition
of dust and other pollutants over the period of a single week
[67]. So urban air pollution can be detrimental to PV performance,
reducing power output by 5% to 15%. These effects are strongest in
large, polluted urban centers with significant local industry, but
may also occur at regional scales (in urban and rural settings)
due to mid- to long-range transport of pollution downwind of
cities [68].

3.1.3. Partial shading
The scarcity of open space in urban regions compels installation

of PV on rooftops, building façades, walkways, and parking lots. As
a result, photovoltaic panels are often placed in locations that
receive partial shading at various times of the day or year
[69,70]. This shading comes from neighboring buildings, trees,
and urban-influenced cloud cover. Several studies have investi-
gated the effect of partial shading on PV performance, showing
lower power output from urban PV than the calculated/expected
values [71–78]. These studies find that there is typically a power
output reduction of 50% to 80% for shaded cells when compared
with unshaded cells in the same module. A study conducted in
Mexico City to compare the performance of PV installed in urban
areas with rural installations found that, due to reduced solar irra-
diance in the urban environment, PV in rural areas generates 20%
greater power output [17]. This is mainly due to the higher view
factor (minimal partial shading) of PV in rural areas.

However, it should be noted that view factors are determined
by PV orientation, obstacle heights, and obstacle proximity to PV
panels. Thus, the proper orientation of PV cells, based on local con-
ditions, plays an important role in addressing the challenge of par-
tial shading in urban settings [79–81]. Therefore, in order to
incorporate urban shadow effects for specific regions, several mod-
eling studies used geographic information system (GIS) mapping
for determining the actual shadow coverage on PV panels [82–
85]. Three-dimensional regional modeling can be implemented in
GIS-based analysis, thereby including effects of complex geome-
tries of rooftops, vertical building surfaces, and other urban geo-
graphical features [86–89]. A GIS study based on Cambridge, MA,
USA compared simulated results for annual electricity yield with
two PV installations, observing errors ranging from 3.6% to 5.6%
[90]. In addition to GIS-based efforts, several other studies also
considered 3D profiles by including urban morphology parameters
such as height and width of buildings, site coverage, orientation of
both PV and buildings, and spacing between buildings [91,92].
Additionally, the adverse shading effects of obstacles in the urban
environment can be partially offset if these obstacles are used to
reflect solar energy onto the PV panels at certain times of day.
Specifically, a recent study by [93] found that the use of aluminum
reflectors can increase the total daily intensity of incident solar
energy by over 5%.
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Separate from power output, the voltage and current character-
istics of PV arrays are non-linearly impacted by partial shading,
resulting in a complex power-voltage curve with multiple local
maxima [94–96]. Another drawback of partial shading is that the
shaded PV cells act as a sink and drain the power from the highest
irradiated modules, leading to hotspots. The remedy for this prob-
lem is use of bypass diodes, which lead to a non-ideal situation of
multiple peaks in the power-voltage characteristic curves [97].
This multipeak phenomenon can lead to failure of conventional
maximum power point tracking control systems. Recent studies
address the interconnection topology for PV installations to mini-
mize the impact of partial shading and hotspots during PV power
generation [98–102].

Studies show that PV array connections and configurations (e.g.,
series, parallel, series–parallel, total-cross-tied, bridged-linked, and
honey-comb) respond differently to the effects of partial shading
[78,103]. Among these configuration types, total-cross-tied sys-
tems show better performance than other configurations for all
the partial shadow cases [104–106]. The worst performance under
partial shading is from systems with series connections [107].
Total-cross-tied PV configurations can be further enhanced by opti-
mal SuDoKu-style rearrangement for the array, without altering
the electrical connections [108,109]. In this technique, the PV array
is arranged based on the SuDoKu puzzle pattern to distribute the
shading effect over the entire array, this will reduce the effect of
shading of modules in any row thereby enhancing the generated
PV power output. Other technologies such as DC-DC optimizers
are also used to minimize the impact of partial shading on PV effi-
ciencies [110]. So, while partial shading of PV in urban settings pre-
sents significant challenges and can reduce array power output by
more than 20%, PV design and installation topology can help
address the penalty of partial shading. However, ongoing urban
development and construction projects can further impact power
output after initial project design and installation. Partial shading
in complex urban settings presents one of the most significant
challenges affecting power production from PV in urban settings.
The design and siting of urban installations must therefore take
into account current and potential future obstacles to solar access.

3.1.4. Soiling
The loss of PV power output due to the accumulation of dirt,

dust, sand, snow, and other contaminants on the PV surface is ter-
med as soiling. In general, soiling can be divided into two cate-
gories: soft shading and hard shading. Soft shading occurs when
fine particles settle on PV surfaces, reducing the transmissivity of
the panel surface. Hard shading, on other hand, occurs when
deposited particles completely block insolation from reaching PV
cells over a portion of the PV module surface [57]. This section
focuses on hard shading, as soft shading was discussed in the sec-
tion on air pollution. Hard shading has more impact on PV perfor-
mance than soft shading. Like partial shading, soiling (hard
shading) of a small section of the PV array will lead not only to
reduced power output, but also leads to a complex power-
voltage curve for the array with multiple local maxima, making
maximum-power-point tracking more difficult.

Unlike other effects on PV power production, soiling is more
dependent on factors such as dust distribution and its intensity,
than on specific urban–rural differences. The effect of soiling on
PV performance is greater in dry regions than in humid regions.
For example, arid regions in North Africa and the Middle East (Asia)
have the worst soiling impact on PV performance in the world
[111]. Another study comparing soiling impacts in seven cities
(Taichung, Tokyo, Hami, Malibu, Sanlucar la Mayor, Doha, and
Walkaway) found that Doha experienced the greatest impact from
soiling, with a power loss of 80% over a 140 days of exposure with-
out cleaning [112]. However, a separate study focused on Doha,
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found that weekly cleaning of the PV surface can improve power
output by up to 6% [113]. Another study that looked at the effect
of dust deposition on PV in Athens, Greece, found that PV perfor-
mance drops by 6.5% within 8 weeks [114]. This is mainly due to
the reduction in light transmittance. For dusty regions, several
studies suggest installing PV modules vertically to avoid cleaning
and maintenances issues [115,116]. However, this practice will
clearly result in substantial power output reduction due to non-
optimal orientation between the panel surfaces and the sun, mak-
ing it inappropriate in many applications. Other studies have
developed and evaluated models to estimate the impact of soiling
on PV, with an emphasis on understanding the economic implica-
tions [38,117–121]. The mathematical models developed in these
studies can forecast PV system power output with reasonable
accuracy under a variety of soiling conditions.

As noted above, urban processes such as construction, and other
commercial and industrial activities affect the soiling rate in the
urban environment. For instance, Santiago, Chile, experiences
roughly a 7% reduction in annual energy generation due to soiling,
despite frequent rainfall events [122]. Even in desert-free regions
such as Poland, researchers found a 13.4% reduction in PV energy
efficiency on a sunny day due to dust deposition on PV panels
[123]. One of the main reasons for this reduction of PV efficiency
is due to the presence of particulate matter (PM2.5) in the urban
airshed. Industrial processes such as combustion of solid and liquid
fuels are the primary source of PM2.5 generation in urban regions.
A study from Shanghai, China, found that the amount of solar radi-
ation available for a PV array falls off exponentially with PM2.5
concentration in the atmosphere [59]. Apart from industrial pro-
cesses, increase in construction activity can also cause soiling.
For example, in Grand Canary Island, Spain, researchers monitored
the soiling impact on PV associated with the construction of a
nearby building. They observed a 20% reduction in efficiency
within 5 months [124,125]. This construction-related soiling effect
likely depends on the characteristics of the construction project
(e.g., concrete vs. wood construction).

In arid cities, lack of soil moisture and fine grain size of soils
contributes to atmospheric transport of small particles, subsequent
deposition on panels, and reduction in panel power output. For
example, in Sharjah, UAE, researchers found that soiling of panels
can result in a power loss up to 40% over a period of only a few
months [126]. Conversely, in humid cities, atmospheric and soil
moisture may diminish the role of PV module soiling relative to
other urban effects. In Perak, Malaysia, a study observed a
soiling-related performance decrease of 4.5% over a month [127].
Thus, for more humid locations, the adverse effects of soiling
may not be as significant as other urban effects. Nevertheless, to
overcome the soiling effect on PV, it is wise to maintain appropri-
ate cleaning intervals, especially in an urban environment where
natural cleaning (rain) might not be sufficient [128–132].
3.2. How does PV affect the urban environment?

In addition to the influence of urban conditions on PV power
output, the presence of PV power systems in cities can in turn
affect the urban environment as a direct result of their influence
on the urban energy balance (see Fig. 6). PV in urban settings
results in three distinct effects on urban systems—perturbations
to urban air temperatures; impacts on building energy demand
for heating and cooling; and alteration of thermal comfort for indi-
viduals in spaces shaded by PV. These effects are driven by a com-
bination of PV panel radiative properties, PV conversion efficiency,
and mounting style which affect convection of heat from the panel
to the air and radiative exchange of thermal energy between pan-
els and the surrounding environment.



Fig. 6. The energy balance of (a) an arbitrary dry urban surface and (b) that surface shaded by a photovoltaic panel. In this example, the urban surface can be bare ground,
pavement, or a building rooftop (after Scherba et al., 2011).
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3.2.1. Air temperature
Photovoltaic panels impact the urban energy balance and can

therefore affect urban air temperatures. During the day, PV panels
often absorb a higher fraction of solar energy than the surfaces
they shade. This is particularly true for applications on commercial
rooftops. As noted above, crystalline silicon solar cells represent
95% of existing PV modules, and these modules have a solar reflec-
tance (albedo) that is typically less than 0.10 for the entire solar
spectrum with conversion efficiencies less than 20% [30]. So, typi-
cal PV panels convert 70% of the incident solar energy into thermal
gain. While some urban surfaces absorb a higher fraction of inci-
dent solar energy (e.g., asphalt has a solar absorptance ranging
from 80 to 90%, depending on age and weathering), many urban
PV systems are installed above much higher reflectance surfaces
such as light-colored roof membranes or shingles which may only
absorb 15–35% of incident solar energy. So first, and foremost,
evaluation of the impact of PV on urban air temperatures must
consider the solar reflectance of the surfaces shaded by the PV
panels.

The thermal characteristics and installation of PV panels are
also key determinants of their impact on urban air temperatures.
Specifically, urban PV panels are mounted above rooftops, on ver-
tical walls, or shading large areas such as pedestrian walkways or
parking lots. In the vast majority of cases, there is an air gap
between the panel and the surface beneath it. This is highly desir-
able from a PV efficiency standpoint, as flush-mounted panels tend
to operate at higher temperatures, diminishing their efficiency. At
the same time, this results in convective heat transfer from both
surfaces of the PV panel to the air. Furthermore, given the rela-
tively low thermal mass of PV panels, they have less thermal iner-
tia, heating up and cooling down more rapidly than other surfaces
in the urban environment. This is especially true at night, when the
high sky view factor, combined with the low thermal mass, enables
PV panels to cool off rapidly to below ambient air temperatures.

One subset of research focused on the impact of PV on air tem-
peratures uses the problematic concept of ‘‘effective albedo”. In
this approach, the albedo of the roof or ground surfaces is simply
substituted with this effective albedo Aeff , equated to the sum of
the PV panel solar reflectance q and PV panel solar energy conver-
sion efficiency g, as in Eq. (2).

Aeff ¼ qþ g ð2Þ
While this seems reasonable on the surface and has some util-

ity, it is crucial to recognize that the PV panel energy balance is
more complicated. Specifically, the vast majority of urban PV mod-
ules are either elevated above roof surfaces (by 0.2–1 m) or further
elevated (3–10 m) above other surfaces such as parking lots or
pedestrian pavilions [133,134]. As a result, heat is convected away
from the PV panel on both the top and bottom surfaces. Local wind
speeds and hence convection coefficients may be slightly higher on
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the top surface. Nevertheless, as noted by [14], ignoring convective
flux from the bottom surface results in an error in estimated con-
vective heat flux to the environment by roughly a factor of 2.
Hence, approaches which ignore this effect can lead to erroneous
calculated results, and conclusions from such studies must be
viewed skeptically.

Such studies which treat PV panels simply as a roofing or
ground cover material with an effective albedo also employ two
other assumptions that must be checked for validity. First, they
make assumptions regarding the solar reflectance of the underly-
ing surfaces that the PV panels cover, often assuming these sur-
faces to be dark. These studies also make assumptions about
panel efficiency. While currently deployed, and widely available
technology has conversion efficiencies ranging from 0.15 to 0.20,
these studies often use unrealistically high conversion efficiencies.
And, as noted above, actual operating efficiencies are oftentimes
lower due to cell operating temperatures that can be significantly
elevated above STC.

Studies using the ‘‘effective albedo” approach have helped to
increase discussion of the interplay between PV modules and
urban air temperature, but since this approach is a simplification,
it can lead to erroneous predictions. Thus, these findings require
detailed reevaluation, particularly regarding conclusions affecting
research strategy and policy. In an early study using the ‘‘effective
albedo” approach a mesoscale atmospheric model (an urbanized
version of MM5 – [135]) was used to predict that widespread
use of PV across the Los Angeles basin in California, USA would
result in a 0.2 �C decrease in air temperatures during the summer
daytime [136]. That study assumed panel efficiencies of 30% and
also assumed that the panels were replacing roof surfaces that
were otherwise dark in color (solar reflectance of �0.15). However,
buildings in hotter climates often utilize higher reflectance roof
coatings, with solar reflectivity greater than 0.6. Even in moderate
climates, buildings typically have rooftop solar reflectivity greater
than 0.2 [137]. Thus, setting albedo for all building rooftops to 0.15
is unrealistic. A subsequent study by Ma et al. (2017) for Sydney,
Australia, suggested that widespread use of urban photovoltaics
could decrease peak summer daytime temperatures by 1 �C
[138]. This study also used a mesoscale atmospheric model (WRF
[139]) and implemented the same method of increasing rooftop
albedo to represent PV panels, but neglected convective heat trans-
fer occurring on the lower surfaces of the PV panels. As a result, it
significantly underestimated daytime convective warming due to
the PV panels. A microscale atmospheric modeling study in Ontar-
io, Canada found that large-scale adoption of PV instead of cool
(white) roofs would result in an outdoor warming penalty. Specif-
ically, [140] found that rooftop PV could result in up to 0.5 �C urban
warming. However, the study also used the effective albedo
approach to represent PV panels and assumed the panels were
flush against the roofs. Therefore, the magnitude of urban warming
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found in this study is likely an underestimate. Masson et al. (2014)
introduced a sophisticated model for the PV energy balance to
compute the air temperature effects of PV using the Town Energy
Balance scheme [141,142]. In their model they assumed that the
PV lower surface temperature is the same as the ambient air tem-
perature. However, since PV panels have very low thermal storage
capacity, the surface temperature difference between the lower
and upper surface of PV modules is typically small or negligible,
and PV panel surface temperatures routinely exceed 70 �C, espe-
cially for very hot locations such as Phoenix, AZ [36,48]. Thus,
the assumption used in the Masson study is inappropriate, leading
to significant errors in estimation of convective heat from PV pan-
els to the surrounding air. Pham et al. (2019) report other inconsis-
tencies with the model used in the Masson study, indicating that
the calculations require reevaluation before any conclusions can
be drawn [14]. Salamanca et al. (2016) used the same erroneous
assumption for PV lower surface temperature for a mesoscale
atmospheric numerical modeling using WRF v3.4.1, thereby also
reporting misleading cooling benefits of PV installations [143].
Another study coupled a computational fluid dynamics (CFD)
model with the WRF model and a 1-D heat conduction model to
simulate the air temperature effects of PV [144]. This study found
a cooling benefit of 0.1 �C during daytime and 0.4 �C at night. The
study used the WRF results, along with Monin–Obukhov Similarity
Theory [145], to determine the boundary conditions for the CFD
model. The CFD model was then coupled with a one-dimensional
heat conduction model to evaluate the surface temperature of
the roof, walls, and solar PV modules. However, the system mod-
eled assumed that all exterior surfaces of the building are covered
with PV panels, and that building surfaces are separated from the
PV panels by a completely enclosed 0.6-m air gap that does not
mix with surrounding air, ignoring the significant convective heat-
ing of ambient air by the lower PV surfaces in most PV systems. The
model also includes several inconsistent assumptions for boundary
conditions and the governing equation for the 1-D heat conduction
model. Hence, the conclusions from this study are also suspect.

Other studies with more detailed and accurate representations
of the PV energy balance, suggest that urban photovoltaics actually
result in daytime warming of the urban airshed. For example,
Scherba et al. (2011) conducted a simulation study, informed and
validated by field measurements to explore the effects of PV
installed above three specific roof types. These were a dark roof
with solar reflectance of 0.06, a white roof with solar reflectance
of 0.7, and a vegetated green roof with substrate thickness of
0.15 m and a leaf area index of 1.0. They found that roof-
mounted PV on a very dark roof resulted in less total warming of
the urban airshed than the unshaded very dark roof alone (with
solar reflectance of 0.06). However, they also found that, when
PV panels were added above a lighter colored roof (with solar
reflectance of 0.7), the net effect was a significant warming of
the urban airshed [146]. Another experimental study, conducted
in southern Arizona, found that a large scale array of PV modules
resulted in an air temperature warming of 1.5 �C during the day,
and 3–4 �C during the night [147]. The study suggests that trapping
of longwave radiation between the shaded ground and PV panels
warmed the ground surface, resulting in higher ambient air tem-
perature. However, due to low thermal storage and high thermal
emissivity, the PV panels should remain cooler than the ambient
air during most of the night, as shown by Pham el., 2019 [14].
While warming of the ambient air in the daytime is expected,
warming at night is somewhat surprising and worthy of further
investigation. This could be an artifact of where and how the ambi-
ent air temperatures were measured, but insufficient data are pre-
sented to support this hypothesis. Another observational study,
also conducted in southern Arizona, found daily average air tem-
perature near PV arrays was 1.3 �C warmer than a nearby reference
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site without PV [11]. These values (air temperature penalties) are
dependent on the efficiency of PV panels. Thus, the use of low-
efficiency, low-cost, and readily-available PV panels, may reduce
the overall solar reflectance, thereby increasing the risks of urban
heating by PV, particularly during the day [148,149].

A recent experimental study compared the effects of unshaded
parking lot surfaces with surfaces shaded either by PV panels or by
shade surfaces coated with a highly reflective coating. Shade struc-
tures using PV panels above an asphalt surface (solar reflectance of
0.19) resulted in an 80% increase in total convective flux to the
urban airshed. However, when the PV shade was replaced with a
white shade surface, the net convective flux to the urban airshed
was actually 50% lower than that from the unshaded ground sur-
face [14]. While this study had several limitations, including that
it used a small-scale test system, and that it indirectly estimated
convective fluxes, it does highlight the urban warming downside
of PV, suggesting that highly reflective artificial shade structures
would be much preferable from an urban cooling perspective. A
follow-on study with the same apparatus found that the addition
of a PV array above a light-colored roof resulted in an increase in
daytime summer convective flux to the surrounding air by a factor
of 10—from a daytime average of 25 W/m2 to 250 W/m2 [13].

So, while there is some discrepancy in the literature, the pre-
vailing experimental evidence and recent, detailed modeling,
incorporating longwave exchange between PV and urban surfaces,
convective heat transfer from both sides of PV panels, and other
improvements, suggest that current implementations of PV in
urban settings will have a warming effect on air temperatures dur-
ing the day, with a likely cooling effect at night. While the local
power production potential of urban PV is desirable, highly reflec-
tive roofs and shade structures provide more cooling benefit.

3.2.2. Building energy use
Separate from the impacts on the ambient environment, PV

mounted on building walls and roofs affects the building energy
balance, potentially influencing air conditioning and heating loads
for the building. BAPV shades the building from direct solar radia-
tion, but also blocks longwave radiative exchange with the sky,
potentially reducing the rate at which the building façade surface
is able to cool at night. These competing radiative effects can have
a range of implications for the thermal comfort of unconditioned
buildings and the energy consumption of conditioned buildings.
Furthermore, the implications depend upon building type/occu-
pancy, local climate, time of day, and time of year. For example,
buildings in moderate climate regions during summer require
cooling energy primarily during daytime hours, while those in hot-
ter climates may require cooling into the evening and overnight
hours. Thus, the presence of PV may reduce cooling demand during
the daytime, but, in hotter climates, it may also increase cooling
load at night [150,151]. In certain situations, PV’s role in increasing
cooling load during the night might be more significant than the
cooling benefits in the daytime, especially for residential buildings
[13]. In addition to these factors, insulation level also plays an
important role in building cooling loads. For instance, if the build-
ing is well insulated, the presence of PV will have less of an impact
on cooling demand, both in daytime and nighttime. The drawback
of most studies that evaluate the role of BAPV in building energy
use is that they tend to ignore these factors, generalizing results
for all building types.

Furthermore, limitations in simulation software, particularly
with respect to an inability to track the impact of PV on thermal
(long-wavelength, or longwave) radiative exchange, leads to
uncertain and misleading results. For instance, Dang et al (2020)
conducted a whole building energy model simulation using Ener-
gyPlus to investigate the potential benefits of PV panels to reduce
the cooling energy for buildings in Ho Chi Minh City, Vietnam
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[152]. Their results show a potential reduction in cooling energy
demand resulting from installation of rooftop PV panels. Energy-
Plus is a well-respected and widely used whole building simulation
software which can handle most aspects of building physics [153].
However, despite being able to track the direct effect of PV panel
shadows on the rooftop surface energy balance, EnergyPlus is not
capable of computing the PV impact on longwave radiation
exchange. In actuality, the PV panels reduce the ability of the roof
surface to radiatively cool through longwave radiative exchange
with the sky, particularly at night; they also radiate longwave
energy to the roof surface, particularly during the day. These
effects are not captured by EnergyPlus, as it does not track the full
radiative energy balance between building surfaces and PV panels.
As a result, simulations of rooftop PV with EnergyPlus may overes-
timate air conditioning energy savings. Another study used the
samemodel to investigate the reduction in heat gain due to rooftop
PV panels on apartments and villas in Saudi Arabia. The study
found a 2% reduction in total cooling load [154]. However, consid-
ering that EnergyPlus ignores the nighttime radiative penalty, it is
possible, or even likely in a city in a locale such as Saudi Arabia
with significant cooling demand at night, that PV may introduce
a net penalty in terms of air conditioning energy use. Several other
studies followed the same erroneous method, without considering
longwave radiative heat transfer interaction between the panel
and rooftop surface, finding similar modest air conditioning bene-
fits resulting from rooftop PV [155–160]. As a result, the conclu-
sions from this large body of literature remain in doubt,
particularly for hot climate cities.

For moderate climate regions, where the cooling load is domi-
nated by solar radiation, the use of PV may still reduce the overall
cooling load, if the daytime benefit prevails over the nighttime pen-
alty. However, the only way to confirm this is by using an approach
that suitably accounts for both the longwave and shortwave rooftop
energy balance effects of PV. A numerical study conducted using
measured roof surface and air temperature data in Western Greece
observed a 17.8% reduction in cooling load during summer and a
6.7% increase in seasonal (winter) heating load associated with roof-
top PV [161]. Results from an experimental study in China found that
the presence of PV on rooftops reduced cooling loads by 27.2–37.4%
during daytime hours, but only reduced total daily air conditioning
energy use by 18.8–27.5% [162]. Other studies from moderate cli-
mate regions also showed a similar pattern [163,164]. However, for
extremely hot places, rooftop PV panels may have a net penalty on
building cooling loads. For example, in a combined measurement
and modeling study in Phoenix Arizona, [13] found a net air condi-
tioning penalty that was equivalent to roughly 10% of the electrical
energy produced by the PV panels. A recent numerical study, based
on Hefei, China, shows that the integration of radiative cooling into
the PV panel glazing could reduce the nighttime penalty, however,
this will lead to a slight penalty in electrical efficiency [165].

It should also be noted that air conditioning energy penalties or
savings also depend on building type (e.g. residential vs. commer-
cial) and characteristics (particularly roof insulation level). Also,
while most studies of building PV have focused on rooftop applica-
tions, several studies have recently explored the use of PV panels as
window blinds or semi-transparent solar cell windows for indoor
thermal comfort and cooling benefits. However, these studies have
not compared PV blind/window performance with that of conven-
tional highly reflective blinds [166–169].

In summary, BAPV has the potential to reduce cooling energy
demand in buildings in moderate climate cities, but may actually
result in an increased air conditioning load in very hot climates.
This uncertainty points to an important need in the modeling of
BAPV—new models must be introduced that adequately track both
shortwave and longwave radiative interactions between PV and
building surfaces.
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3.2.3. Provision of shade and thermal comfort
PV-panel-based shade structures are increasingly competing

with alternatives such as tree shade and other artificial shade
structures as a mechanism for improving outdoor thermal comfort
in cities. Implementation of PV shade for pedestrian walkways and
parking lots is growing particularly fast in hot desert environments
such as Phoenix, AZ (Fig. 7). By shading pedestrians (and their
parked cars) from direct solar radiation, PV panels reduce direct
exposure to the sun, providing a more thermally comfortable envi-
ronment during daytime. However, as noted previously, PV panels
can become quite hot during the day, radiating high levels of ther-
mal energy to the environments and individuals they shade. As a
result, environments shaded by PV will likely be less comfortable
than those shaded by cooler surfaces with a higher solar reflec-
tance [140]. Thermal environments under PV shade structures
may also remain warmer at night than unshaded environments
due to trapping of thermal radiation, especially under clear sky
conditions. As an example of this, a study conducted in Phoenix,
AZ, showed that although unshaded pavement absorbs more
energy during the day, its surface remains cooler at night than
pavement shaded by PV. [14]. This result suggests that pedestrians
shaded by PV panels feel warmer during the night, than they would
in an unshaded environment. However, results from this study also
show that, during the night, PV panels remain cooler than the
ambient air due to their high thermal emissivity and low thermal
storage. The net effect of PV on outdoor thermal comfort at night
is therefore a balance between the beneficial convective cooling
and the adverse effects of blocking longwave radiation heat trans-
fer to the sky. Other studies have compared shading from PV struc-
tures to that provided by a tree canopy, finding that solar panels
used for shading streets result in lower pavement surface temper-
atures [170–172]. This is generally attributed to the more fulsome
shade coverage provided by opaque panels in comparison with the
incomplete shade provided by moderately dense tree canopies.
However, it should also be noted that these studies do not consider
the adverse effects of the hot PV surfaces on convective warming of
the surrounding airshed. Therefore, future studies are required to
consider these factors and account for the net effect of PV on out-
door thermal comfort.
4. Discussion & conclusions

The findings from the analyzed literature show that urban influ-
enced parameters such as air temperature, pollution, soiling, and
shading play a non-trivial role in affecting PV power generation.
While it is difficult to quantify the impact of elevated urban air
temperatures (the urban heat island effect) on PV panel surface
temperatures, and hence power production, the UHI likely results
in a reduction in power production that varies seasonally and
diurnally.

Air pollution can further reduce power production of PV instal-
lations by 5 to 15%. Studies show that the deposition of fine parti-
cles may reduce PV power output more than coarse particles.
While this effect is most notable in highly polluted urban environs,
it can also manifest itself in rural installations downwind of urban
and industrial pollution sources.

Soiling, particularly in arid regions with drier soils and higher
levels of airborne particulates, has been shown in several studies
to have the potential to reduce power output of PV installations
by more than 40%. Urban areas often have a higher fraction of
impervious surfaces such as roads, parking lots, and buildings.
Thus, they may be less apt to have high atmospheric loading of par-
ticulates from soils. Nevertheless, other sources of soiling in urban
environments, including soot from vehicles and industry and dust
from construction activities may significantly contribute to soiling



Fig. 7. Rows of PV shade structures provide shaded parking for hundreds of parking spaces on the Arizona State University west campus in Glendale, AZ. Photo: David Sailor.
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of PV. However, research suggests that periodic cleaning of PV sur-
faces, either from precipitation or from routine maintenance can
maintain the generation penalty of soiling at less than 10%.

Shading remains one of the most significant challenges to main-
taining performance of PV systems in dense urban areas. Even par-
tial shading from trees or other buildings can significantly impact
power production. The average effects of this penalty can be on
the order of 20%. However, careful design of urban installations,
accounting for current, and potential future shading, can greatly
reduce this issue.

While the urban environment can adversely impact power pro-
duction from PV installations, the presence of PV systems can also
impact several key aspects of the urban environment. Specifically,
PV systems affect urban air temperatures, building energy con-
sumption, and the provision of shade. Studies of the impact of
urban PV systems on urban air temperatures show conflicting
results. Our analysis suggests this is due to errors and inappropri-
ate assumptions in some studies—most notably treating PV panels
as one-sided thermally massive surfaces with an effective albedo.
Multiple observational studies have shown that large-scale PV
installations can warm the air during the day by several degrees
C, while potentially cooling the air at night. This is largely due to
the fact that PV panels have very little thermal mass, therefore con-
verting much of the excess absorbed solar energy into convective
warming of the surrounding air. We conclude that further con-
trolled empirical studies and validated modeling efforts are
needed, particularly because the conflicting studies differ not sim-
ply in magnitude of their projections, but in terms of the sign of the
anticipated impact of PV on air temperatures. Ultimately, in evalu-
ating the impact of PV on urban air temperatures, it is crucial to use
realistic values for PV efficiency, PV installation characteristics, and
the solar reflectance of urban surfaces the installed PV would
shade.

The literature is also somewhat divided on the question of how
roof-mounted PV affects the energy performance of the building.
While it is reasonable to expect that the shading of the building
from solar radiation would reduce air conditioning demand, the
magnitude of this savings depends significantly on the assumption
of the albedo of the roof surface being shaded, the level of building
insulation, and other building construction and operation charac-
teristics. Also, it is worth noting that roof-mounted PV will inhibit
longwave cooling of the roof surface at night, providing a mecha-
nism for increasing air conditioning loads, particularly in urban cli-
mates where air conditioning demand remains high at night.
Ultimately, the impact of PV on building air conditioning demand
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in summer, and heating demand in winter depends on many fac-
tors and it is therefore difficult to generalize the impact.

As a general rule, any form of shading in hot urban environ-
ments is beneficial. This can be accomplished through tree cover,
shade of buildings, or dedicated shade structures. When shade
structures integrate PV, they serve the dual purpose of generating
electricity while shading pedestrians and parked cars from solar
gains. At the same time, research has shown that PV shade struc-
ture surfaces are much hotter than those of shade structures with
high solar reflectance on their top surfaces. As a result, purely from
the perspective of pedestrian thermal comfort, highly reflective
shade structures are preferable as they will produce lower mean
radiant temperatures for pedestrians.

As our synthesis suggests, photovoltaics in urban settings offer
many benefits, but also are fraught with challenges—both in terms
of how the urban environment affects their performance, and how
they can adversely affect the urban environment and energy con-
sumption for air conditioning. These complexities are often diffi-
cult to convey to the general public or to local/regional decision-
makers who are typically seeking simplified summaries regarding
the evaluation of technologies. The scientific community must be
careful in conveying the adverse effects of any sustainability solu-
tions, as they are sometimes taken out of context and can dramat-
ically slow the penetration of technologies that, despite their
limitations, remain an overall benefit to society; urban PV is no
different.
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